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2 Context, positioning and objectives

2.1 Objectives and research hypothesis

Spirit of the project. One of the most meaningful theorem in computer science is due to Rice, in 1953:

Theorem ([1]). Any non-trivial question on the behavior of programs is undecidable.

What is striking about this statement is its generality: it holds for any non-trivial question. Furthermore,
trivial questions are answered by one of two trivial programs (either returning always “yes”, or returning al-
ways “no”), hence the dichotomy is both sharp and deep. This brings its interpretation to an epistemological
ground regarding the powers and limits of algorithmic problem solving (i.e., by means of a computer, which
is nowadays ubiquitous). Attaining this level of generality is the guiding principle of our project ALARICE —
to obtain results “à la Rice”.

Rice’s theorem belongs to the field of computability theory, and we aim to bring its spirit to the field of
complexity theory, which is another fundamental pillar of computer science. This shift towards the decid-
able world is motivated by the objects under consideration, finite dynamical systems, where virtually any
question is decidable via a naive exhaustive search. As a consequence, the formulation of Rice-like results
consists in general (lower and upper) bounds of computational complexity. The discrete dynamical sys-
tems at stake are defined by “simple” local rules, and readily show “complex” global behaviors. They are
informally referred to as “complex systems”, and we endorse that the computational complexity point of
view provides a theoretical framework to formalize this common intuition.

ALARICE is composed of three Objectives. 1) Develop a novel combination of techniques based on the ex-
pressiveness of finite model theory, which allows to prove metatheorems, provided a correct definition of
non-triviality. 2) Adopt a systematic complexity point of view approach on all facets of automata network
theory, aimed at gaining legible knowledge towards the implementation of vaster metatheorem proof tech-
niques. 3) Transfer the results to other models of computation, such as finite cellular automata and reaction
systems, through the reconsideration of simulations in the unifying framework of reductions, and reach an
understanding of the complexity of finite dynamical systems as abstract and broad as possible.

Mathematical models. The main models we employ are automata networks (ANs), widespread in the
community for their versatility (see the state of the art for applicative aspects). Indeed, any directed graph
is the dynamics of some AN, hence any finite (discrete) dynamical system can be modeled as an AN. This
is an important feature, ensuring that our developments will be as general as possible. Specific restrictions
and transfers to other models of computation are essential aspects of our project. The first purpose of ANs
was to model gene regulation processes taking place in the cell nucleus [2, 3].

Formally, an AN is composed of n automata, each holding a state among a finite alphabet Qi for i ∈ [n] =
{1, . . . ,n}, and a local function fi : X →Qi giving its next state provided the current global state of the system
within X = Πi∈[n]Qi . A configuration x ∈ X gathers the state of all automata, denoted xi ∈ Qi for each
i ∈ [n]. We now have a discrete dynamical system (X , f ), where f : X → X is defined as ∀x ∈ X : f (x) =
( f1(x), . . . , fn(x)) i.e., all automata update their state in parallel at each step. This update policy is also called
fully synchronous. Other update policies may be observed, such as the sequential and block-sequential
modes updating the automata in a predefined order (repeatedly), the perfectly asynchronous mode updating
one automaton chosen non-deterministically at each step, and the non-deterministic mode where local
functions become local relations ri ⊆ X ×Qi (and y is an image of x when yi ∈ ri (x) for each automaton i ).
The graph of f on vertex set X is its dynamics denoted Gf . It has out-degree 1 in deterministic settings, i.e.,
it is a union of cycles with hanging trees pointing towards the cycles. In the theory of dynamical systems
applied to the modelling of natural phenomena, the limit dynamics plays a central role. It is the restriction
to configurations of Ω f = ⋂

t∈N f t (X ) where f is applied to sets as f (Y ) = ⋃
x∈Y f (x). For deterministic

systems, it is a collection of fixed points x ∈ X such that f (x) = x, and limit cycles (x0, . . . , xk−1) such that
f (xi ) = xi+1 mod k where k is the length of the limit cycle.

When Q1 = . . . =Qn = {0, . . . , q−1}, we have q-uniform automata networks, and the case q = 2 is the so-called
model of Boolean automata networks (BANs). We stick on the Boolean case to introduce a central object of
AN theory: the interaction graph denoted Gf . It has one vertex per automaton, and an arc from i to j
whenever f j : {0,1}n → {0,1} effectively depends on its i -th component (formally, if there exists x ∈ {0,1}n
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Figure 1: A Boolean automata network of size n = 4 and two dynamics. Left: local functions and interaction
graph Gf (the arcs from 1 to 4 and from 2 to 4 are both positive and negative). Center: parallel dynamics,
it corresponds to updating the full set of automata {1,2,3,4} at each step. Right: dynamics obtained when
updating first automata {1,2,4} then automata {3,4}. Fixed point configurations are depicted in blue.

such that f j (x) ̸= f j (x+ei ) with ei the i -th base vector and addition taken modulo 2). The graph Gf captures
the architecture of the network, through the mutual influences among automata. Signs may be added to
the arcs of Gf , representing two non-exclusive types of influence: positive or negative. The sign of an arc is
positive (resp. negative) when there exists a configuration x such that flipping xi from 0 to 1 flips f j from
0 to 1 (resp. from 1 to 0). Intuitively, along a positive arc the head tends to mimic the tail, whereas along a
negative arc the head tends to negate the tail. An example is given on Figure 1.

Given our focus on algorithmic complexity theory, it is important to detail how instances of our model
are encoded. In line with the encoding of propositional formulas in the Boolean case, an AN of size n is
given as a list of n Boolean circuits, one for each local function fi with

∑
j∈[n]⌈log2(|Q j |)⌉ input bits and

⌈log2(|Qi |)⌉ output bits. To avoid a costly (coNP-complete) instance validity check, outputs are interpreted
modulo |Qi |. In case of a non-deterministic local relation ri , the circuit has

∑
j∈[n]⌈log2(|Q j |)⌉+⌈log2(|Qi |)⌉

input bits and 1 output bit. Circuits provide a malleable way to express local behaviors. Any directed graph
G = (V , A) is the dynamics of an AN of size 1 and alphabet V . The obtained circuit corresponds to the notion
of succinct graph representation, which will be discussed in Objective 1. In case of bounded in-degree of
the interaction graph ∆(Gf ) ≤ d , which is meaningful both in theory and practice, a truth-table encoding
of local functions can take polynomial space O (nd+1). In this case the notion of communication graph is
necessary, which will be discussed in connexion with Objective 2.b. Lastly, in Objective 2.a. we consider as
input the interaction graph Gf , encoded by its signed adjacency matrix.

The plasticity of automata networks, and its close connection with circuit representations, is able to give
some immediate complexity lower bounds. For example, the BAN from Figure 1 in parallel proves the NP-
hardness of the fixed point existence problem, by reduction from SAT (here with ϕ = [(x1 ∨ x2)∧ (¬x1 ∨
¬x2)∧ x3] on 3 Boolean variables). Additional constraints, such as a bounded degree of interactions, the
monotonicity of local functions, or fixed/uniform/bounded alphabets, can strengthen the considerations
and help investigating the core attributes of the model that are able to embed the behavioral complexity.
They are also steps towards other models of computation, such as reaction networks (corresponding to
simple forms of local functions) and finite cellular automata (where the spatial uniformity imposes a rigid
architecture on the network). These interconnections will be investigated in Objective 3.

Objective 1 – Unveil metatheorems. Standard dynamical approaches aim at understanding the dynamics
Gf , in terms of the local functions ( fi )i∈[n]. This follows methodological reductionism, a philosophy widely
adopted in theoretical and applied sciences such as system biology (see the state of the art section for ref-
erences). This leads to algorithmically solving decision problems of the form: given ( fi )i∈[n], does Gf has a
given property? Such questions are able to capture in a formal way the paradigm that complex behaviors
can emerge from simple interactions (e.g. there are PSPACE-complete problems for ANs with local func-
tions of in-degree 2). Many problems are known to be computationally complex in this framework (a partial
list is given in the state of the art section), from NP to PSPACE (even NEXPTIME, but PSPACE is arguably a
natural upper bound for many models, because the whole dynamics can be inspected in polynomial space,
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although without a full instantaneous memory of the visited configurations).

With the circuit encoding presented above for ANs, capturing a common way of expressing the mechanics
of local behaviors (hence the terminology automata for the entities), many problems can easily be proven to
be NP-hard or coNP-hard. In 1985, Alon stated the NP-completeness of the fixed point existence problem
by saying “we omit the details” [4]. Carrying on our comment of Figure 1, this construction also proves the
coNP-hardness of asking whether the parallel dynamics is a union of limit cycles of length 2 (by reduction
from UNSAT), and also of testing the injectivity of Gf . Its structure can also be used to prove that the existence
of a limit cycle of some fixed length is NP-complete [5], as well as the existence of other induced subgraphs
fixed in the problem definition. The idea is to have n +m automata, such that a configuration evaluates
some propositional formula on n Boolean automata, and accordingly creates one of two subgraphs in Gf

on the corresponding set of configurations where only the last m automata vary (for the parallel example
of Figure 1, either a cycle of two configurations if the valuation is negative, or a fixed point with a pending
node if the valuation is positive). It is possible to use analogous constructions to obtain complexity lower
bounds for other properties of Gf [6]. The property of being a constant map is also coNP-complete, but
requires a different construction (to reduce from UNSAT), because configurations corresponding to negative
valuations are all sent to the same configuration (for example with all automata in state 0). Building on this
analysis, we have recently obtained a first metatheorem encompassing at once a large range of such devel-
opments, using tools from finite model theory:

Theorem 1 ([7]). Given a deterministic AN f encoded as Boolean circuits, any non-trivial question on Gf

expressed in first-order graph logic is NP-hard or coNP-hard.

The choice of the language of model theory allows to express questions with a high level of abstraction and
generality. A crucial point in this context is to craft a good notion of non-triviality. In this case, a question is
non-trivial if it admits both infinitely many models (local functions of ANs verifying the property), and in-
finitely many countermodels (local functions of ANs not verifying the property). Consequently, trivial ques-
tions are answered in constant time, simply by checking among a finite list of instances. This metatheorem
fully dichotomizes the computational complexity of deterministic ANs with respect to first-order questions,
showing a meaningful and sharp gap, in the spirit of Rice, between O (1) and NP- or coNP-hardness. This is
the kind of Rice-like theorem we aim at developing.

The technicalities are numerous. Let us first recall that first-order graph logic (FO) are formulas evaluated
on graphs (finite graphs in our setting, namely Gf ), constructed with the usual connectives ∧,∨,¬,⇒ and
quantifications ∃,∀ on vertices (configurations in our setting). Atoms are built on the signature {=,→} where
x → y is true when there is an arc from x to y . To a FO formula we associate a decision problem, taking as
input the circuits ( fi )i∈[n]. It includes all the examples mentioned above, and many more:

• existence of a fixed point: ∃x : x → x;
• existence of a limit cycle of length three: ∃x, y, z : (x → y)∧(y → z)∧(z → x)∧(x ̸= y)∧(x ̸= z)∧(y ̸= z);
• injectivity: ∀x, x ′, y, y ′ : (x → y)∧ (x ′ → y ′)∧ (y = y ′) ⇒ (x = x ′);
• being constant: ∀x, x ′, y, y ′ : (x → y)∧ (x ′ → y ′) ⇒ (y = y ′);
• being the identity: ∀x : x → x;
• having exactly one fixed point: ∃x : (x → x)∧ (∀y : (y ̸= x) ⇒¬(y → y));
• having at least three configurations (a trivial property): ∃x, y, z : (x ̸= y)∧ (x ̸= z)∧ (y ̸= z);
• being a map (a trivial property): ∀x∃y : x → y ;
• . . .

One can readily notice that some of these problems are NP-complete whereas others are coNP-complete
(indeed, formulas can be negated). Thus, unless a long-standing open complexity collapse is proven, a gen-
eral complexity lower bound must accommodate this symmetry regarding negation, as Theorem 1 does.
Furthermore, different formulas lead to widely different behaviours requiring a range of techniques (see the
three different gluing operations in [7]).

We aim at developing complexity metatheorems, on three levels:
• from the local functions of ANs to their dynamics for Objective 1,
• towards other AN-related problems for Objective 2,
• towards other models of computation for Objective 3.
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The proof techniques employed to obtain the metareduction in [7] are novel, and required to combine
tools from finite model theory (in particular Ehrenfeucht-Fraïssé games and Hanf-Gaifman locality) with
the constructions of discrete dynamical systems. It can be seen as an abstract pumping corresponding to
the problem SAT/UNSAT we reduce from: negative valuations generate neutral graph pieces to the dynamics
(here is the pumping), and positive valuations generate pieces that make a difference (see below the satura-
tion graph). This suggests a number of extensions, none of which is evident. Therefore we have a collection
of concrete questions to address at short/mid-term:

• Can we obtain an analogous result for ANs on bounded alphabets (e.g. Boolean)?
At present, [7, Theorem 5.2] deals with succinct graph representations rather than simply ANs, be-
cause unbounded alphabets are required. Indeed, the essence of AN theory lies in the interactions,
and we want to go beyond the graph theoretical field opened by Galperin in 1982 [8]. This amounts
to using finite model theory more finely, in order to construct dynamics with a prescribed number
of configurations (power of the alphabet size). We have early arithmetical evidence that the Boolean
case may be simpler to obtain than arbitrary q-uniform networks, because a geometrical sequence
can be extracted from {ak +b | k ∈N}∩ {2n | n ∈N}, namely the sizes of dynamics being both obtained
by pumping (left term, for a base graph of size b and a pumped part of size a), and decomposable
as an integer number of Boolean automata (n). The use of Fermat’s little theorem, and the gluing of
graph parts beyond deterministic dynamics, are still to be precised. Nevertheless, this is our most
desired objective, in order to bring metatheorems to the AN community at large.

• What about other signatures? Observe that the signature {=,→} is up-to-isomorphism (it ignores
configuration labels, i.e., automata states). Including finer relations would be meaningful for appli-
cations, and this direction is largely open. If we add relations to distinguish configurations, such
as the componentwise partial order ≤ or the total order, then we have P-complete problems, such as
∀x : (∀y : x ≤ y) ⇒ (x → x) meaning that the minimum configuration (0n in the Boolean case) is a fixed
point (checked simply by evaluating the local functions). Hence a general complexity lower bound
would be a P-hardness result, and logspace metareductions are required. This extension is mean-
ingful for applications, where different configurations may bear different interpretations. Goubault–
Larrecq did her Master thesis on the matter in 2022, and found how to: 1) meticulously design circuit
constructions in logarithmic space for the reductions from [7], and 2) prove a Rice-like P-hardness
lower bound when unary relations distinguishing unique configurations (one per network size) are
added. This is encouraging, but leaves room to push the subject forward.

• Can we extend the study to non-deterministic ANs? In this setting, new non-trivial FO questions
arise, which must be proven hard as well. Deterministic ANs correspond to Gf having out-degree 1,
a hypothesis thoroughly exploited in the proofs of [7]. In a preprint [9] (also bringing the study to
MSO, see next question), we have shown that succinct representations of general digraphs can have
model sizes such that the design of a polytime reduction requires almost a P = NP collapse (on a
robust set of instances; even in FO). However, we have also found that bounding a structural param-
eter of the dynamics Gf is a key tool to go beyond this lock. We have obtained a complexity lower
bound metatheorem for the NP- or coNP-hardness of problems expressed by arborescent formulas,
i.e. those having both infinitely many models of bounded treewidth, and infinitely many countermod-
els of bounded treewidth. The tree structure of decompositions then allows to extract, with the aid of
the finite number of equivalence classes for its nodes (basic model theory application), pieces to be
glued to win Ehrenfeucht-Fraïssé games. That is, to pump. We want to try other graph families with
finitary constraints on the dynamics Gf , and formalize in a larger setting what are the “pumpable
graph parameters”. We expect that bounded cliquewidth works, which would include some prob-
lems not captured by bounded threewidth, for example the property of being a clique. Note that we
do not parameterize the input ( fi )i∈[n], but the dynamics Gf . Individually, such results give sufficient
conditions on the formulas (restrictions on the notion of non-triviality) to obtain a general complex-
ity lower bound. Collectively, we believe that they are building up our understanding of what we still
informally call “the pumping technique”.

• And to monadic second-order (MSO) logic? MSO is more expressive, but the tools employed in [7]
for FO (in particular Hanf-locality) do not apply any more to quantifications over sets of vertices. The
new constructions from [9] manage to perform abstract MSO pumping, hence overtaking FO’s local-
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ity. AN complexity theory may be a new applicative field for finite model theory. For example, it is
proven in [9] that, for any m ∈ N, there exists a graph Ωm saturating all MSO formulas of quantifier
rank m. That is, for every formula ψ with rank m, Ωm ∪G |= ψ ⇐⇒ Ωm |= ψ. For each formula, in
order to achieve a reduction, it remains to exhibit a pumpable part in the graph, as discussed above.
We expect to foster the interactions with tools from finite model theory, in particular by considering
metareductions from problems with a different shape/structure than SAT. This will also arise when
trying to characterize formulas expressing higher complexity classes: [7] also proves that, in the de-
terministic setting, FO achieves completeness for all levels of the polynomial hierarchy, hence the
general complexity lower bound can be refined. Typical MSO questions (unexpressible in FO) such as
connectivity are PSPACE-complete [10], therefore we also target general complexity bounds for this
class, which is central in the realm of universality of computations operated by discrete dynamical
systems.

Objective 2 – Exhaust typical problems. Before one can imagine Rice-like metatheorems, it is necessary
to get a vision of typical complexity results that hold for large classes of questions, and the AN constructions
at stake. Therefore, we also aim at developing other topics in AN theory (other than the central questions
from local functions ( fi )i∈[n] to dynamics Gf , currently in the scope of Objective 1) with a systematic com-
putational complexity point of view. Constructions often rely on structural characterizations (in terms of
network architecture, as it is captured by the interaction graph Gf ), hence subobjectives will also tackle
non-algorithmical issues, still in the spirit of our project.

Subobjective 2.a – On input Gf . When only the signed interaction graph Gf of a Boolean network is known,
many local functions are possible: a doubly exponential number, in general. Constructing a compatible
BAN is not always possible (for example it is impossible that an automaton have in-degree 1 and an arc
signed ±), but the admissible interaction graphs are known [11]. In the monotonous setting, that is when
all Boolean local functions are nondecreasing for the bitwise partial order on configurations (x ≥ y =⇒
fi (x) ≥ fi (y)), possible automata networks are a product of Dedekind numbers (for which finding an explicit
formula has been open for 125 years). They are tied up with the notion of Boolean lattice dualization, to
which every monotonous local function is a solution (deciding whether all solutions have been obtained in
that context is one of the few natural problems known to be in QP but not in P [12]). Deriving knowledge
on possible dynamics Gf solely from the knowledge of the interaction graph Gf is therefore a challenging
task, and a central topic of AN theory. It is also especially meaningful towards the applicative field of system
biology and in particular gene regulation, where wet-lab experiments mostly concentrate on discovering
the architecture of the network (the arcs of Gf and their signs) [13]. Hence, such problems are at the core of
applications.

The complexity of questions on the maximum and minimum possible number of fixed points have been
settled in [11], ranging from P (with a tough algorithm from [14]) to NP and up until NEXPTIME (for exam-
ple: given G , does there exist f with no fixed point and Gf = G?). This series of results somewhat explains
why structural bounds cannot be tight (known bounds are sometimes very loose, such as the exponential
upper bound in the positive feedback vertex set of Gf [15]). It is notable, though expected, that the com-
plexities are lowered when the input interaction graphs have bounded degree (completeness for ΣP2 and
NP#P). What about unsigned interaction graphs, and other quantities such as limit cycles? The tricky
constructions from [11] exploit known structural properties of fixed points presented in [15, 16], and the
current lack of knowledge on limit cycles needs to be addressed first. The study of non-Boolean alpha-
bets requires beforehand to adapt signs with the increased degree of liberty (when only Gf is known).

Subobjective 2.b – Compute Gf . Given the Boolean circuits encoding the local functions of a BAN f ,
it turns out that it is not obvious to compute its interaction graph Gf (see [6, Chapter 4]). In general the
associated decision problem is complete for the class DP, which is sandwiched within NP,coNP ⊆ DP ⊆
ΣP2 . However, some properties are easier to check than others. For example, deciding whether Gf is a
clique is complete for NP, deciding whether Gf is empty is complete for coNP, and Gf can be computed
in polytime under the promise that it has bounded in-degree. In light of these early observations, we aim
at a tetrachotomy theorem into these four classes, to fully characterize the complexity of problems related
to computing the properties of Gf . Sufficient conditions for the lower bounds can be derived from known
constructions, thus the difficulty in this approach is to find an appropriate general notion of graphical
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property to allow this classification.

These lower bounds (in particular the DP-hardness of computing Gf in general) also mean that algorithms
considering as input both the local functions and the precise interaction graph are implicitly assuming a
costly promise. Hence the concept of communication graph currently circulating in the community is
especially useful to replace the interaction graph. It corresponds to a superset of the interactions, i.e., an
automaton depends on some in-neighbors, but may ignore some others (this can be interpreted as a syntac-
tical check that only its in-neighbors appear in the definition of its local function). This also strengthens the
interest for families of networks defined by their interaction graph Gf alone, such as disjunctive, totalistic
and set-defined networks [17]. Such families permit to bypass some complexity locks.

Subobjective 2.c – Knowledge of Gf up to isomorphism, or partial. In [18] a fairly new question is raised,
taking the counterpart to standard approaches: what if the dynamics Gf is known up to isomorphism, but
the network itself is unknown? Without the isomorphism condition, the local functions are completely
determined by Gf , hence a more meaningful question concerns the possibility of extending a partial knowl-
edge of Gf (see below). In the Boolean setting, a dynamics G up to isomorphism may admit various BANs
f , with various interaction graphs Gf (without signs, as a first exploration). Therefore one asks about the set
G(G ) = {Gf | Gf ∼ G } for some G . Insightful questions on the number and degrees of possible interaction
graphs are answered in [18] in the deterministic parallel setting, notably leading to a strong universality of
the complete interaction graph: when G is neither the identity nor a constant map (each having a unique
element in G(G )), then G(G ) contains the complete interaction graph. In other words, the complete inter-
action graph can support all dynamics except those two. Structural bounds on the constraints that can
be imposed on G(G ) (e.g. finding some G that maximizes the minimum in-degree or number of arcs in its
interaction graphs) still need to be tighten. We also conjecture that there are univeral dynamics having
almost all possible interaction graphs, i.e. that max{|G(G )| | V (G ) = {0,1}n} ∼n→∞ 2n2

. Trying to minimize
G(G ) is a complementary task. We also aim at understanding which families of dynamics G can be sup-
ported by an interaction graph with bounded maximum in-degree. Such dynamics can then be generated
using only finitely many local functions. In that sense, local computations are simple, but the resulting
dynamics are still very difficult to predict. A basic counting argument shows that almost no dynamics are
degree-bounded, but rather surprisingly it is difficult to exhibit non-trivial families. For instance, we do not
know whether the dynamics G consisting of a single limit cycle (of length 2n in the binary case) is degree-
bounded or not [19].

Another concrete open question is, for example, to characterize the set G such that G(G ) contains an
acyclic interaction graph. According to a fundamental observation by Robert [20], if Gf is acyclic then
f n is a constant map (i.e. f converges to a unique fixed point in at most n steps). This basic result says
that cycles of interactions (feedback loops in a biological context) are the engines of behavioral complex-
ity. This inverse problem revives this relationship, which has not been investigated since the 1980s. The
characterization is not obvious, and may be analyzed as the possibility of “folding” Gf in at most n step.

A partial knowledge of Gf (which is another view of experimental outcomes in applicative context) can
always be extended to a full AN, because any directed graph is the dynamics of some AN. A pertinent
additional constraint is monotonicity, which may be imposed to all or some local functions. In the fully
monotonous Boolean setting, searching an extension corresponds to the famous lattice dualization prob-
lem [12] (with a N o(log N ) algorithm, when N is the size of the known domain). Indeed, the problem can
be split to the level of the extension of individual local functions. Partially non-monotonous extensions
opens the field, and good complexity upper bounds are also meaningful for practical purposes. Moving to
counting the number of solutions is also a means to guide experiments minimizing the uncertainties.

Subobjective 2.d – Update modes. The consideration of other update policies opens a considerable world
to explore. Virtually any of the preceding problem may be revisited, for example by asking whether there
exists an update schedule within a prescribed family. In terms of computational complexity, quantifying
over this new parameter may bring problems one level higher in the polynomial hierarchy, as shown in a
first study of limit cycles under block-sequential update modes [5]. This can be interpreted as the update
schedule itself embedding part of the complexity. Some applicative outlooks may guide us throughout
(although the most pertinent update policies are still largely discussed in gene regulation for example [21]),
and we expect to be able to overtake usual update modes. The asynchronous and all block-sequential up-
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dates are known to preserve the set of fixed points (the canonical initial focus on the limit dynamics), but
the recent introduction of block-parallel update modes (dual to the latter) break this invariance. They also
permit a broader embedding of complexity in the dynamics of substeps (in the sequence of blocks sequen-
tially updated to compute one step), basically smashing all problems to the class PSPACE, with notable
exceptions: for example testing bijectivity is still coNP-complete in this context [22]. These early results
with new constructions need to be developed, to reach the level of metatheorems (only sketched so far).

The interplay between elements of flexibility offered by update schedules, and structural constraints on the
interactions or the local functions, is also expected to increase our understanding of the influence of update
modes. For example, [23] shows that asynchronism can compensate the limitations coming from symmetric
local interactions. The results are expressed in terms of computational complexity, but also in connexion
with simulations and Objective 3. Given that this topic brings numerous new questions, restrictions to
monotonous ANs with Gf of in-degree 1 or 2 will be a first step in this exploration.

Objective 3 – Go beyond automata networks. ANs are flexible enough to model any finite dynamical
system, which is a strength of the model in terms of universality. However, it can also be a weakness, in
the sense that without further restrictions ANs are “too versatile” and do not model distributed processes
that are decomposable. As an illustration, having a single automaton (n = 1) allows to have arbitrarily many
vertices in the dynamics (whose vertex set is the configuration space), but it corresponds to succinct graph
representations, therefore missing the flavor of natural phenomena where the global behavior emerges from
local interactions among entities. Our project is to go beyond this pitfall both ways: 1) by considering addi-
tional restrictions on its architecture (Gf ) and local functions (( fi )i∈[n]), in order to transfer the complexity
bounds to other models of computation via simulations acting as reductions, and 2) by fully abstracting
the model of computation, hence see the dynamics as pure directed graphs and consider general opera-
tions for their decomposition. We aim to demonstrate that our studies are not trapped to the model of
ANs, but indeed more general.

Subobjective 3.a – Simulation. The complexity point of view on finite dynamical systems is widespread,
with problems characterized by completeness results on various models such as finite cellular automata [24],
reaction systems [25], tile assembly [26], DNA folding [27]. Our goal is to lift the complexity bounds to the
level of metatheorems as in Objective 1. To this purpose we aim at developing strong formal simulations,
allowing to transfer complexity bounds among models of natural computation. Concretely, a target is to
formalize statements of the form: if A simulates B via a transformation φ : XB → X A then the complex-
ity of B cannot exceed that of A +φ. The difficulty lies in finding satisfactory definitions i.e., as general as
possible. A simulation φ is roughly expected to be a (possibly partial) factor map, that is with φ◦B = Ak ◦φ
(i.e. k steps of A simulate one step of B). In order to gain pertinence and sharpness for the purpose of com-
plexity bounds, φ should be as simple as possible. Constraints on φ can be formalized in multiple ways,
each of them dedicated to meet particular models of computation. A subset of our current landscape is:
strictly step-by-step (k = 1), non-uniformly step-by-step (k varies), total (φ surjective), bijective (so is φ),
and asymptotic (on the limit dynamics). These restrictions and relaxations can also be combined. Broadly
speaking, our group is interested in developing an abstract theory of simulation, aimed at catching our
intuition towards what we would call a simulation thesis.

Back to ANs, to unlock the transfer of current metatheorems [7, 9], a major step is to bring it to bounded
alphabets (e.g. Boolean, which is part of Objective 1). This would allow a decomposition into automata
performing local computations, to be matched with the corresponding entities of other discrete dynami-
cal systems. As an illustration, in order to reach finite cellular automata (i.e. having a simple φ mapping
ANs to CAs), another identified stage is to bring uniformity to the local rules. Here, attainable restrictions
on the interaction graph of ANs constructed with the pumping technique will be crucial, and it is also
expected to be nourished by our progresses on sub-dynamics (directed graphs) obtained from model the-
ory (so far, only basic tools are employed). A simple φ would readily act as a reduction, provided that our
ANs are sufficiently constrained. Reaction networks are closer to ANs, and the transfer may be more direct
(obtaining disjunctive networks with signs goes in the same direction). An interesting case of study will be
P-systems from membrane computing, because their relation to complexity theory is unconventional, such
as SAT being famously solvable in deterministic polytime using active membranes [28]. Obtaining simula-
tion impossibilities is a graal, but complexity theory assumptions can help to circumvent the current lack
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of a satisfying notion of “not being Turing universal” (despite considerable interest).

We are used to see SAT and Cook-Levin theorem as the foundation of complexity theory, but canonical com-
plete problems are trivially expressed in terms of Turing machine simulation (typically for a given number of
time steps, see for example [29, Proposition 3-M]). It means that complexity lower bounds implicitly give
efficient ways to embed arbitrary computation. As a broader objective, we want to explicit how (possibly
non-deterministic) computations are operated in hardness proofs, because reductions are simulations and
we do embed algorithms in many facets of our discrete dynamical systems.

Subobjective 3.b – Algebra of finite dynamical systems. Decomposition methods are widely used to de-
crease the cost of extensive computation, in a divide-and-conquer approach [30, 31, 32]. Two graph op-
erations are especially relevant to dynamical system theory: 1) alternative composition (one or the other,
i.e. disjoint union of dynamics) denoted +, and 2) simultaneous composition (both, i.e. the direct prod-
uct of dynamics) denoted ·. Fully abstracting the computational model, those two operators on concrete
dynamics (directed graphs as adjacency matrices, taken up to isomorphism) have recently been shown to
form a semiring [33]. This provides a framework for the analysis of complex behaviours that are actually due
to smaller independent systems. Landmark elements of G ·H are decomposable, such as fixed points (they
must exist in both G and H ) and transient lengths (maximum path lengths from G and H ). The (direct)
product of two dynamics can also be interpreted in terms of succinct representations as the disjoint union
of their two circuits, and we want to further explore these connections.

Our goal is to characterize the complexity of polynomial equations of the form P (X1, . . . , Xn) =Q(X1, . . . , Xn)
(there is no notion of subtraction, hence the placement of the terms matters). Such equations are unde-
cidable in general (a consequence of Matiyasevich’s theorem), therefore we aim at understanding decidable
families of polynomial equations, such as those with a constant right-hand side. Members of the consor-
tium are currently focusing on H ·X =G , that is the problem of divisibility (of G by H ), which is unexpect-
edly subtle [34]. Indeed, part of the difficulty lies in the non-injectivity of polynomials, because a decom-
posable dynamics possibly admits multiple factorizations (bounding their quantity is also a target) [35].
This is sustained by our recent discoveries that computing roots (solutions of X k = G ) can be done in cu-
bic time because of the injectivity of the polynomial X k , and that general linear multivariate equations (of
the form

∑
i∈[n] H i · Xi =G ) are NP-complete (writing in progress). It is also not yet known whether prime

dynamics (basic building blocks) exists. The field is new and largely open.

2.2 Position of the project as it relates to the state of the art

We follow the structure of its objectives to present the originality of ALARICE, and our contributions.

Objective 1 – Unveil metatheorems. The use of model theory to state metatheorems is entirely new,
and has been developed by four members of the consortium in a recent paper [7] for FO graph logics in
deterministic setting with unbounded alphabets (Theorem 1). We have a preprint to carry the results to
MSO with non-deterministic dynamics [9], with an additional condition on the non-triviality of formulas,
expressed in terms of structural graph theory (arborescence). It is also proven in [9] that an unparameter-
ized version of triviality fails (under complexity assumptions developed in [36]), and we aim to generalize
our result under pumpable structural constraints other than treewidth. We have preliminary results on q-
uniform ANs for q = 2, and are willing to study it directly to the level of MSO, and for both deterministic and
non-deterministic dynamics (each with original constructs, gluing delicately inside tree decompositions).
The exposure of [7] furthermore includes complementary general PSPACE-completeness bounds for ab-
stract properties of limit sets and their sizes (remark that limit dynamics drop alphabet issues). Rice-like
complexity statements encompass at once many results from the literature: [4, 37, 38, 39, 5] (see [6] for a
survey). In non-deterministic settings, that is with arbitrary directed graphs, formal developments are more
abstract than for deterministic cases, where one can exploit the simple structure of out-degree-1 dynam-
ics. It therefore needs finer tools from structural graph and finite model theories, for which the consortium
gathers extra expertise [40, 41, 42, 43, 44, 45].

At present, the results from [7, 9] belong to the field of succinct graph representations (mostly regarding
general non-deterministic dynamics), because of an issue in obtaining the correct number of nodes in the
Cartesian product V (Gf ) = X . Metareductions (for upper and lower bounds) are also central in the literature
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of succinct graph representations, to transfer known complexity bounds on graph problems with standard
encodings (such as adjacency matrix): 1) in [46] from P (non-succinct) to NP (succinct), such as existence
of a triangle in Gf , or maximum in-degree∆(Gf ) ≥ k for some fixed k. They also obtainΣP2 -completeness for
minimum in-degree δ(Gf ) ≤ k for some fixed k, and leave many loose bounds, 2) in [47] from NP-hard (non
succinct, for projection reduction) to NEXPTIME-hard (succinct), such as whether Gf has a Hamiltonian
cycle, or whether it is 3-colorable, 3) in [10] the authors clarify the requirements on reductions to be con-
vertible to succinct encodings, and give a nice class to class general conversion (they also study problems
in the counting hierarchies), and 4) in [48] lower complexity classes are considered (basic search problems
becomes PSPACE-hard). Our approach differs: we do not transfer known results, but establish new holistic
complexity lower bounds from the expressiveness of graph logics. This literature however provides good
material regarding the feasible refinement of metatheorems to other complexity classes, because it charac-
terizes many well-studied graph problems for succinct encodings.

Interestingly, our Rice-like complexity lower bound for MSO on dynamics with bounded treewidth [9] can
be seen as a succinct counterpoint to Courcelle’s theorem [49]. The proof technique based on graph gluing
(pumping) closely relates to the notion of composability in model theory [50, 51]. The composition method
literature focuses on the decidability of theories and, problematically to our purpose, abstract operations
often distort the signature of the logics. Nevertheless, our pumpings on unbounded-depth trees for deter-
ministic ANs, and on tree decompositions for non-deterministic ANs, are similar to Muchnik’s iterations of
a structure [52, 53], and we want to investigate this connection.

In a larger spectrum, obtaining general results in the spirit of Rice’s theorem has been pursued in various
ways. Notably in the field of cellular automata, with successful undecidability results on their limit sets [54,
55, 56]. In the realm of complexity theory, there are attempts towards Rice-like theorems for non-trivial
counting property of circuits, but they get stuck to UP and SPP hardness [57, 58]. This track has been
completed in [59], proving that any language property of NP-sets is NP-hard to decide (the same holds for
other leaf languages). Given that Rice’s theorem proves their undecidability, the significance is limited. A
more fruitful approach is di/tri/tetrachotomy theorems, discussed in Objective 2.b.

Objective 2 – Exhaust typical problems. The multiple facets of AN theory brings a variety of problems
to address, connecting the three objects: local functions ( fi )i∈[n], interaction graph Gf and dynamics Gf .
They serve the qualitative modelling of natural phenomena with a wide range of applications: from biology
to sociology and economics [2, 3, 60, 61, 62, 63, 64]. In some contexts monotonicity is requested, and it is
also a case of study. From a practical point of view, computational complexity gives bounds essential to the
design of (the most) efficient algorithms. From a theoretical point of view, it gives formal meanings to the
intuitive term “complex system”. Classical results of the domain are structural. For example [20, 65, 15, 66,
67, 68] relate properties of Gf such as the size of feedback arc sets, to properties of Gf such as its number
of fixed points. In particular, Thomas’s rules are easily catchable statements: 1) having at least two fixed
points in Gf requires a cycle with an even number of − arcs in Gf , and 2) having no fixed point requires a
cycle with an odd number of − arsc in Gf (see [69, 70] for surveys). Our proposal is to understand these
relations through the lens of computational complexity theory. This renewed point of view outlines why
some structural bounds are still loose despite considerable efforts.

Subobjective 2.a – On input Gf . A primary focus on Gf are its fixed points, which can be interpreted as
cellular types on gene regulatory networks [2, 3, 60]. It has been shown that the number of fixed points is
at most exponential in the minimum (positive) feedback vertex set of Gf , and is at least its packing num-
ber [71, 15, 72]. These bounds are tight, but sometimes far from optimal. The question has been raised,
from a computational complexity perspective, by Richard during GDR-IM days in 2016. Four members of
our consortium have obtained the first results after intensive efforts, combining a new kind of construction
(for the reductions) with known structural relations [11]. Computing the maximum and minimum num-
ber of fixed points possible on a given Gf touches a large panel of complexity classes, in particular under

bounded degree of interactions (∆(Gf ) ≤ d , with NP#P-completeness), and also required the use of a strong
graph algorithm to detect positive cycles (with an even number of − signs) [14]. These are the first results
of this kind. They are particularly insightful for applications (where Gf is well approximated, but Gf un-
known) and softwares [73], because our lower bounds say that the problem is readily intractable (except for
asking whether one fixed point is possible, but to the best of our knowledge, the algorithm from [14] has not
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yet been successfully implemented). In order to develop it, a deep understanding of structural relations is
essential, but for example on limit cycles, it is currently limited to Thomas’s rule [66, 69] and the characteri-
zation of very simple architectures [67]. High and varied complexities point out the obstacle to the design
of good structural bounds.

Subobjective 2.b – Compute Gf . This topic only appears in the coordinator’s HDR thesis [6], and sheds
light on the cost of implicit promises when both the local functions ( fi )i∈[n] and the interaction graph Gf

are given as input to an algorithm. It is related to the notion of essential variable in Boolean functions [74],
whose complexity was not fully characterized by DP. The known range from P (bounded degree) to NP (arc
existence only), coNP (arc inexistence only) and DP (in general) hint at the quest for a tetrachotomy theo-
rem to classify all graph properties. Besides Schaefer and Creignou-Heramnn famous dichotomy theorems,
there are trichotomy and tetrachotomy results in the literature [75, 76, 77].

Subobjective 2.c – Knowledge of Gf up to isomorphism, or partial. The systematic study of G(G ) for an
unlabelled dynamics G is a fairly new research direction, introduced in [18]. It is however very natural:
as described in Subobjective 2.a, the interaction graph is a key parameter and many dynamical properties
are invariant by isomorphism (number of fixed and periodic points, length of limit cycles and transient
phases...). This setting allows many classical results to be expressed (e.g. if G corresponds to an additive dy-
namics, then G(G ) contains an interaction graph which is a disjoint union of companion digraphs [78]) but
at the same time it brings many new perspectives, for instance: which are the dynamics G such that the set
G(G ) is small (the dynamics needs specific interactions), large (the dynamics is rather ubiquitous), contains
degree-bounded interaction graph (the dynamics can be produced with simple local computations)? We
have started providing partial answers [18, 19], and pushing this direction further could lead to a deep re-
newal of the study of relationships between interaction graphs and dynamical properties. Tools come from
various domains. For instance, we prove in [18] that G(G ) always contains an interaction graph with small
in-degree using a difficult theorem from additive number theory [79].

Subobjective 2.d – Update modes. Update modes have been a central subject for the applicative aspects
of AN theory [2, 3] (see [21] for an overview), and they are known to have a gradation of effects on the limit
dynamics [67]. However, by another fundamental observation by Robert, fixed points are invariant under
any block-sequential update schedule (where each automaton is updated exactly once during each step).
Limit cycles, however, could differ, in a way characterized in [80, 81] for very simple architectures (cycles,
with an even or odd number of negative arcs). The computational complexity approach is then employed to
explain why the pursue of such precise characterization is locked: the corresponding decision problems
are NP and ΣP2 -complete [82, 5]. Counting the number of possible update modes of a given family is some-
times a computationally expensive task (#P-complete for block-sequential), and is sometimes given by nice
formulas and enumerations (for block-parallel) [83, 22]. Such results give a frame to further explorations.

Through computational complexity issues including update modes, we have offered some intuitive under-
standing (even though the constructions are technical): on quantifier alternation in the question (to jump
higher inPH [5]), on the possibility to embed arbitrary computation in substeps (PSPACE-completness [84]),
and on the conversion among degrees of liberty in the model (local rules versus update modes [23]).

Objective 3 – Go beyond automata networks.

Subobjective 3.a – Simulation. The concept of reduction is a pillar of computer science used to classify
problems (both in computability and complexity theory). When considering natural models of computa-
tion like CAs, several notions of intrinsic simulations have been studied [85] to classify them as dynamical
systems. These notions are strong enough to preserve dynamical properties and automatically deduce re-
ductions between several associated decision problems, but also general enough to obtain many simulation
results and give rise to intrinsic universality. Recently, this approach was adapted to the model of ANs [86]
with a focus on computational complexity. The above notions are useful to get lower bounds but are strictly
limited to a single model. Simulation results can also be established between variations on a model: for
instance, when changing the update schedule of ANs [87, 88]. However, to our knowledge, the correspond-
ing notions of simulation were not studied in relation to computational complexity of decision problems. A
unifying framework of simulation for finite dynamical systems is still missing.

Subobjective 3.b – Algebra of finite dynamical systems. The literature on this domain is still scattered, al-
though direct product is a standard graph operator (Kronecker product in terms of adjacency matrices) [89].
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The domain of succinct graph representation is typically interested in the transfer of complexity bounds
from concrete (or explicit) to succinct graphs. We do not follow this trajectory, except for potential converse
transfers from Rice-like PSPACE-hardness to (N)L-hardness. Various algorithms solving polynomial equa-
tions have been developed, whose worst case complexities are exponential, but show good performance in
practice [35]. The unroll of a dynamics (family of trees constructed from limit cycles backward) has shown
to be a key notion to study compositions, because tree-like dynamics (connected and with a unique fixed
point) behave nicely with respect to + and · [90].

Building up on FANs project (ANR-18-CE40-0002). 5 members of our team were already members of the
ANR JCJC project Foundations of Automata Networks, coordinated by Sylvain Sené from 2018 to 2022. This
project was very fruitful (see the website for a detailed publication list), settling some important problems of
the theory of automata networks, among which the complexity of some counting problems of fixed points
and limit cycles, or the demonstration of some computational properties linked to the sensitivity to syn-
chronism. The convenience and intuitiveness of our general proofs emphasized the relevance of notions of
simulation, which we propose to understand further in our proposal.

On top of that, from the FANs project emerged very broad complexity results that were stated in the fash-
ion of Rice’s theorem. Unlike the previously mentioned results, even the question itself was unexpected
in its form. One consequence is that the 5-persons team did not master all the topics that this family of
questions relates to (finite model theory, tree automata, graph theory, combinatorics, circuit complexity,
arithmetics. . . ). Hence the idea of pushing it further, with an expanded consortium.

3 References

[1] H.G. Rice. “Classes of recursively enumerable sets and their decision problems”. Trans. AMS (1953).
[2] S.A. Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic nets”. Theoretical Biology

22 (1969).
[3] R. Thomas. “Boolean formalization of genetic control circuits”. Theoretical Biology 42.3 (1973).
[4] N. Alon. “Asynchronous threshold networks”. Graphs and Combinatorics 1 (1985).
[5] F. Bridoux, C. Gaze-Maillot, K. Perrot, and S. Sené. “Complexity of Limit-Cycle Problems in Boolean Networks”.

SOFSEM. 2021.
[6] K. Perrot. “Études de la complexité algorithmique des réseaux d’automates”. HDR. Aix Mars. Uni., 2022.
[7] G. Gamard, P. Guillon, K. Perrot, and G. Theyssier. “Rice-Like Theorems for Automata Networks”. STACS. LIPIcs

187. 2021.
[8] H. Galperin. “Succinct Representations of Graphs”. PhD. Princeton University, 1982.
[9] G. Gamard, P. Guillon, K. Perrot, and G. Theyssier. “Hardness of monadic second-order formulae over succinct

graphs”. Preprint (2023).
[10] J.L. Balcázar, A. Lozano, and J. Torán. “The complexity of algorithmic problems on succinct instances”. Com-

puter Science (1992).
[11] F. Bridoux, A. Durbec, K. Perrot, and A. Richard. “Complexity of fixed point counting problems in Boolean Net-

works”. J. of Computer and System Sciences 126 (2022).
[12] T. Eiter, K. Makino, and G. Gottlob. “Computational aspects of monotone dualization: A brief survey”. Discrete

Applied Mathematics 156 (2008).
[13] N. Le Novère. “Quantitative and logic modelling of molecular and gene networks”. Nature Reviews Genetics 16

(2015).
[14] N. Robertson, P. Seymour, and R. Thomas. “Permanents, Pfaffian orientations, and even directed circuits”. An-

nals of Mathematics 150.3 (1999).
[15] J. Aracena. “Maximum Number of Fixed Points in Regulatory Boolean Networks”. Bulletin of Mathematical

Biology 70.5 (2008).
[16] M. Gadouleau, A. Richard, and S. Riis. “Fixed points of Boolean networks, guessing graphs, and coding theory”.

SIAM J. on Discrete Maths 29.4 (2015).
[17] E. Goles, P. Montealegre, M. Rios-Wilson, and G. Theyssier. “On the Impact of Treewidth in the Computational

Complexity of Freezing Dynamics”. CiE. 2021.
[18] F. Bridoux, K. Perrot, A. Picard Marchetto, and A. Richard. “Interaction graphs of isomorphic automata networks

I”. J. of Computer and System Sciences 138 (2023).
[19] J. Aracena, F. Bridoux, P. Guillon, K. Perrot, A. Richard, and G. Theyssier. “On the Dynamics of Bounded-Degree

Automata Networks”. AUTOMATA explor. 2023.
[20] F. Robert. “Itérations sur des ensembles finis et AC contractants”. Linear Algebra and its App. 29 (1980).

12/14

http://sylvain.sene.pages.lis-lab.fr/fans/
http://sylvain.sene.pages.lis-lab.fr/fans/
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1007/BF02582959
https://doi.org/10.1007/978-3-030-67731-2_10
https://tel.archives-ouvertes.fr/tel-03611794
https://doi.org/10.4230/LIPIcs.STACS.2021.32
https://dl.acm.org/doi/10.5555/910425
https://hal.science/hal-03978957
https://hal.science/hal-03978957
https://doi.org/10.1007/978-1-4615-3422-8_30
https://doi.org/10.1016/j.jcss.2022.01.004
https://doi.org/10.1016/j.jcss.2022.01.004
https://doi.org/10.1016/j.dam.2007.04.017
https://doi.org/10.1038/nrg3885
https://doi.org/10.2307/121059
https://doi.org/10.1007/s11538-008-9304-7
https://doi.org/10.1137/140988358
https://doi.org/10.1007/978-3-030-80049-9_24
https://doi.org/10.1007/978-3-030-80049-9_24
https://doi.org/10.1016/j.jcss.2023.05.003
https://doi.org/10.1016/j.jcss.2023.05.003
https://zenodo.org/records/8276266/files/paper_5_version2.pdf
https://zenodo.org/records/8276266/files/paper_5_version2.pdf
https://doi.org/10.1016/0024-3795(80)90251-7


2025–2029
Scientific description ANR ALARICE

I2M, LIS (Marseille)
CRIStAL, I3S, Junia, LORIA (Nice+)

[21] L. Paulevé and S. Sené. “Boolean networks and their dynamics: the impact of updates”. Systems biology mod-
elling and analysis (2022).

[22] K. Perrot, S. Sené, and L. Tapin. “Complexity of Boolean automata networks under block-parallel update modes”.
SOFSEM. 2024.

[23] M. Rios-Wilson and G. Theyssier. “Intrinsic Universality in Automata Networks III: On Symmetry versus Asyn-
chrony”. Preprint (2022).

[24] K. Sutner. “On the Computational Complexity of Finite Cellular Automata”. J. of Computer and System Sciences
50.1 (1995).

[25] A. Dennunzio, E. Formenti, L. Manzoni, and A. E. Porreca. “Complexity of the dynamics of reaction systems”.
Information and Computation 267 (2019).

[26] L. Adleman, Q. Cheng, A. Goel, M.D. Huang, D. Kempe, P.M. de Espanés, and P.W.K. Rothemund. “Combinatorial
optimization problems in self-assembly”. STOC. 2002.

[27] M. Ota and S. Seki. “Rule set design problems for oritatami systems”. Theoretical Computer Science 671 (2017).
[28] M.J.P. Jiménez, A.R. Jiménez, and F.S. Caparrini. “Complexity classes in models of cellular computing with mem-

branes”. Natural Computing 2 (2003).
[29] S. Perifel. Complexité algorithmique. Ellipses, 2014.
[30] C. Su, J. Pang, and S. Paul. “Towards Optimal Decomposition of Boolean Networks”. IEEE/ACM Trans. Comput.

Biol. Bioinformatics 18 (2019).
[31] K. Perrot, P. Perrotin, and S. Sené. “On Boolean automata networks (de)composition”. Fundamenta Informati-

cae 181 (2021).
[32] K. Perrot, P. Perrotin, and S. Sené. “Optimising attractor computation in Boolean automata networks”. LATA.

2021.
[33] A. Dennunzio, B. Dorigatti, E. Formenti, L. Manzoni, and A. E. Porreca. “Polynomial Equations over Finite,

Discrete-Time Dynamical Systems”. ACRI. 2018.
[34] F. Doré, E. Formenti, and A. E. Porreca S. Riva. “Decomposition and factorisation of transients in Functional

Graphs”. Preprint (2022).
[35] S. Riva. “Factorisation of discrete dynamical systems”. PhD. Univ. Côte d’Azur, 2022.
[36] L. Fortnow and R. Santhanam. “Robust simulations and significant separations”. Information and Computation

256 (2017).
[37] P. Floréen and P. Orponen. “On the computational complexity of analyzing Hopfield nets”. Complex Systems 3

(1989).
[38] P. Orponen. “Neural networks and complexity theory”. MFCS. 1992.
[39] S. Kosub. “Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems”. Mathemat-

ics in Computer Science 1 (2008).
[40] J. Chalopin and V. Chepoi. “1-Safe Petri nets and special cube complexes: equivalence and applications”. ACM

Tr. on Computational Logic 20 (2019).
[41] L. Bozyk, O. Defrain, K. Okrasa, and M. Pilipczuk. “On objects dual to tree-cut decompositions”. Journal of Com-

binatorial Theory, Series B 157 (2022).
[42] N. Fijalkow and B. Monmege. “Games with Payoffs”. Games on Graphs. Ed. by N. Fijalkow. 2023.
[43] P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk. “Canonical Decompositions in Monadically Sta-
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