FO satisfiability for cellular automata over finite graphs Coup d'envoi ALARICE

G. Theyssier

Institut de mathématiques de Marseille (CNRS, Université Aix-Marseille)

March 2025

• dynamical system = graph + local rule

example: conjunctive Boolean networks

• dynamical system = graph + local rule

example: conjunctive Boolean networks

• property = property of orbits

example: having a fixed point

• dynamical system = graph + local rule

example: conjunctive Boolean networks

• property = property of orbits

example: having a fixed point

- ϕ -SAT problem for fixed property ϕ
 - *input:* **local rule** λ
 - question: \exists ? graph G such that dynamics $(G, \lambda) \models \phi$

Why?

- automata network theory
 - intrinsic universality (work with M. Rios-Wilson)
 - interaction/communication graphs
- T. Tao's universality program on PDE from physics
 - potential well dynamics https://arxiv.org/abs/1707.02389
 - incompressible Euler equation on compact manifolds https://arxiv.org/abs/1902.06313

finite model theory: undecidable thresholds in MSO fragments

• graphs: simple unlabeled digraphs G = (V, E)

- graphs: simple unlabeled digraphs G = (V, E)
- cellular automata local rules:
 - Q finite alphabet
 - $\lambda : \boldsymbol{Q} \times \boldsymbol{2}^{\dot{\boldsymbol{Q}}} \to \boldsymbol{Q}$

- graphs: simple unlabeled digraphs G = (V, E)
- cellular automata local rules:
 - Q finite alphabet
 - $\lambda : \mathbf{Q} \times \mathbf{2}^{\mathbf{Q}} \to \mathbf{Q}$
- dynamical system $Q^V \rightarrow Q^V$
 - configurations $c \in Q^V$
 - $F_{G,\lambda}(c)_{\nu} = \lambda (c_{\nu}, \{c_{\nu'}: (\nu', \nu) \in E\})$

- graphs: simple unlabeled digraphs G = (V, E)
- cellular automata local rules:
 - Q finite alphabet
 - $\lambda: \mathbf{Q} \times \mathbf{2}^{\mathbf{Q}} \to \mathbf{Q}$
- dynamical system $Q^V \rightarrow Q^V$

DEMO!

• configurations $c \in Q^V$

•
$$F_{G,\lambda}(c)_{v} = \lambda (c_{v}, \{c_{v'}: (v', v) \in E\})$$

- graphs: simple unlabeled digraphs G = (V, E)
- cellular automata local rules:
 - Q finite alphabet
 - $\lambda : \mathbf{Q} \times \mathbf{2}^{\mathbf{Q}} \to \mathbf{Q}$
- dynamical system $Q^V \rightarrow Q^V$
 - configurations $c \in Q^V$

•
$$F_{G,\lambda}(c)_{v} = \lambda(c_{v}, \{c_{v'}: (v', v) \in E\})$$

- properties: FO formulas on orbits
 - example: surjectivity $\stackrel{def}{=} \forall x \exists y, y \rightarrow x$
 - $\phi \rightsquigarrow \text{problem } \phi \text{-SAT}$

• for λ and ϕ , consider $\mathcal{G}(\lambda, \phi) \stackrel{\text{def}}{=} \{ \mathbf{G} : \mathbf{F}_{\mathbf{G}, \lambda} \models \phi \}$

- for λ and ϕ , consider $\mathcal{G}(\lambda, \phi) \stackrel{\text{def}}{=} \{ \boldsymbol{G} : \boldsymbol{F}_{\boldsymbol{G},\lambda} \models \phi \}$
- always MSO-definable (MSO1 over graphs)

•
$$\mathcal{G}(\Psi) \stackrel{def}{=} \left\{ G : G \models \Psi \right\}$$

•
$$\forall \lambda, \forall \phi, \exists \Psi : \mathcal{G}(\Psi) = \acute{\mathcal{G}}(\lambda, \phi).$$

- for λ and ϕ , consider $\mathcal{G}(\lambda, \phi) \stackrel{\text{def}}{=} \{ \mathbf{G} : \mathbf{F}_{\mathbf{G},\lambda} \models \phi \}$
- always MSO-definable (MSO1 over graphs)

•
$$\mathcal{G}(\Psi) \stackrel{def}{=} \{ G : G \models \Psi \}$$

•
$$\forall \lambda, \forall \phi, \exists \Psi : \mathcal{G}(\Psi) = \acute{\mathcal{G}}(\lambda, \phi).$$

Theorem

For any MSO1 formula Ψ there are λ and ϕ such that

$$\mathcal{G}(\Psi) = \mathcal{G}(\lambda, \phi)$$

and $\Psi \mapsto (\lambda, \phi)$ is computable.

• $\mathcal{G}_{con}(\lambda, \phi) \stackrel{\text{def}}{=} \{ \boldsymbol{G} : \boldsymbol{F}_{\boldsymbol{G},\lambda} \models \phi \text{ and } \boldsymbol{G} \text{ connected} \}$

•
$$\mathcal{G}_{con}(\lambda,\phi) \stackrel{\text{def}}{=} \{ \boldsymbol{G} : \boldsymbol{F}_{\boldsymbol{G},\lambda} \models \phi \text{ and } \boldsymbol{G} \text{ connected} \}$$

Theorem bis

For any MSO1 formula Ψ there are λ and ϕ such that

1.
$$\mathcal{G}_{con}(\Psi) = \mathcal{G}_{con}(\lambda, \phi),$$

2. ϕ only depends on **prefix signature** of prenex Ψ , and $\Psi \mapsto (\lambda, \phi)$ is computable.

- prefix signature: $\exists X, \forall Y, \forall x, \forall y, \forall z \rightsquigarrow \exists_2 \forall_2 \forall_1$
- from now on, all graphs are connected!

Undecidable ϕ **-SAT**

Corollary

There is ϕ such that ϕ -SAT problem is undecidable.

Undecidable ϕ -SAT

Corollary

There is ϕ such that ϕ -SAT problem is undecidable.

- Turing machine T → Ψ_T MSO formula s.t. G ⊨ Ψ_T iff
 "G is a grid that can hold an halting space-time diagram of T"
- check that prefix signature of Ψ_T is independent of T
- apply "theorem bis": $\Psi_T \mapsto (\lambda_T, \phi_T)$
- ϕ_T does **not** depend on T!
- So there is a fixed ϕ such that: $\lambda_T \in \phi$ -SAT $\iff \mathcal{G}(\lambda_T, \phi) \neq \emptyset \iff \mathcal{G}(\Psi_T) \neq \emptyset \iff T$ halts

• $\phi_1 \stackrel{\text{def}}{=} \forall x, \exists y, y \to x$ (bijectivity \equiv injectivity \equiv surjectivity)

• $\phi_1 \stackrel{\text{def}}{=} \forall x, \exists y, y \to x$ (bijectivity \equiv injectivity \equiv surjectivity)

$$\lambda \in \phi_1 ext{-SAT} \iff egin{cases} q \mapsto \lambda(q, \emptyset) ext{ bijective or,} \ q \mapsto \lambda(q, \{q\}) ext{ bijective } \end{cases}$$

• $\phi_1 \stackrel{\text{def}}{=} \forall x, \exists y, y \to x$ (bijectivity \equiv injectivity \equiv surjectivity)

$$\lambda \in \phi_1 ext{-SAT} \iff egin{cases} q \mapsto \lambda(q, \emptyset) ext{ bijective or,} \ q \mapsto \lambda(q, \{q\}) ext{ bijective } \end{cases}$$

•
$$\phi_2 \stackrel{\text{def}}{=} \exists x, x \to x$$
 (having a fixed point)

• $\phi_1 \stackrel{\text{def}}{=} \forall x, \exists y, y \to x \text{ (bijectivity} \equiv \text{injectivity} \equiv \text{surjectivity})$

$$\lambda \in \phi_1 ext{-SAT} \iff egin{cases} q \mapsto \lambda(q, \emptyset) ext{ bijective or,} \ q \mapsto \lambda(q, \{q\}) ext{ bijective } \end{cases}$$

•
$$\phi_2 \stackrel{\text{def}}{=} \exists x, x \to x$$
 (having a fixed point)
graph unfolding to tree + bound on depth

•
$$\phi_1 \stackrel{\text{def}}{=} \forall x, \exists y, y \to x \text{ (bijectivity } \equiv \text{ injectivity } \equiv \text{ surjectivity}$$

 $\lambda \in \phi_1 \text{-SAT} \iff \begin{cases} q \mapsto \lambda(q, \emptyset) \text{ bijective or,} \\ q \mapsto \lambda(q, \{q\}) \text{ bijective} \end{cases}$

•
$$\phi_2 \stackrel{\text{def}}{=} \exists x, x \to x \text{ (having a fixed point)}$$

graph unfolding to tree + bound on depth

• similar reasoning for $\neg \phi_1$ and $\neg \phi_2$

• $\phi_1 \stackrel{\text{def}}{=} \forall x, \exists y, y \to x \text{ (bijectivity} \equiv \text{injectivity} \equiv \text{surjectivity})$ $(a \mapsto \lambda(a, \emptyset) \text{ bijective or.}$

$$\lambda \in \phi_1 ext{-SAT} \iff egin{cases} q \mapsto \lambda(q, \psi) ext{ bijective of}, \ q \mapsto \lambda(q, \{q\}) ext{ bijective of}, \ q \mapsto \lambda(q, \{q\}) ext{ bijective of}, \end{cases}$$

•
$$\phi_2 \stackrel{\text{def}}{=} \exists x, x \to x$$
 (having a fixed point)
graph unfolding to tree + bound on depth

• similar reasoning for
$$\neg \phi_1$$
 and $\neg \phi_2$

Question 1

The smallest ϕ with ϕ -SAT undecidable?

- BOOlean Unlabeled Set rules of Any radius
- trade unbounded alphabet for unbounded radius

- BOOlean Unlabeled Set rules of Any radius
- trade unbounded alphabet for unbounded radius

•
$$Q = \{0, 1\}$$

• $S_k(c, v) = \{c_{v'} : d(v', v) = k\}$
• $\lambda : \{0, 1\} \times (2^{\{0, 1\}})^R \to \{0, 1\} \text{ of radius } R:$
 $F(c)_v = \lambda(c_v, S_1(c, v), S_2(c, v), \dots, S_R(c, v))$

- BOOlean Unlabeled Set rules of Any radius
- trade unbounded alphabet for unbounded radius

•
$$Q = \{0, 1\}$$

• $S_k(c, v) = \{c_{v'} : d(v', v) = k\}$
• $\lambda : \{0, 1\} \times (2^{\{0, 1\}})^R \to \{0, 1\} \text{ of radius } R:$
 $F(c)_v = \lambda(c_v, S_1(c, v), S_2(c, v), \dots, S_R(c, v))$

Questions 2

- is there an undecidable φ-SAT in this model?
- can we capture all MSO?
- what about larger (fixed) alphabet?

- \mathcal{F} : family of dynamical systems
- FO-SAT
 - *input:* ϕ FO formula on orbits
 - question: $\exists ? F \in \mathcal{F} : F \models \phi$

- \mathcal{F} : family of dynamical systems
- FO-SAT
 - *input:* ϕ FO formula on orbits
 - question: $\exists ? F \in \mathcal{F} : F \models \phi$
- decidable for $\mathcal{F} = \{$ finite dynamical systems $\}$

- \mathcal{F} : family of dynamical systems
- FO-SAT
 - *input:* ϕ FO formula on orbits
 - question: $\exists ? F \in \mathcal{F} : F \models \phi$
- decidable for $\mathcal{F} = \{$ finite dynamical systems $\}$

Theorem (unpublished but true ©)

There is a 2D CA *F* such that FO-SAT is **undecidable** for $\mathcal{F} = \{F\}$.

- *F*: family of dynamical systems
- FO-SAT
 - *input:* ϕ FO formula on orbits
 - question: $\exists ? F \in \mathcal{F} : F \models \phi$
- decidable for $\mathcal{F} = \{$ finite dynamical systems $\}$

Questions 3

- $\mathcal{F} = \{q$ -uniform automata networks}?
- $\mathcal{F} = \{ \text{Boolean networks} \}$?
- $\mathcal{F} = {F_{G,\lambda} : G \text{ finite graph}}$ for some fixed λ

Theorem (unpublished but true ©)

There is a 2D CA *F* such that FO-SAT is **undecidable** for $\mathcal{F} = \{F\}$.

Endless variations

- replace sets by (capped) multisets: $2^Q \rightsquigarrow [k]^Q$
- **non-uniform CA**: add labels on vertices
- Cayley graphs: add labels on edges + λ distinguishes incoming neighbors
- undecidability for other properties?
 - intrinsic universality
 - producing large cycles/transients
- replace SAT by ω -nontrivial