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Undecidability on finite dynamical systems

• dynamical system = graph + local rule
example: conjunctive Boolean networks

• property = property of orbits
example: having a fixed point

• ϕ-SAT problem for fixed property ϕ
• input: local rule λ
• question: ∃? graph G such that dynamics(G, λ) |= ϕ
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Why?

• automata network theory
• intrinsic universality (work with M. Rios-Wilson)
• interaction/communication graphs

• T. Tao’s universality program on PDE from physics
• potential well dynamics
https://arxiv.org/abs/1707.02389

• incompressible Euler equation on compact manifolds
https://arxiv.org/abs/1902.06313

• finite model theory: undecidable thresholds in MSO fragments
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A basic model

• graphs: simple unlabeled digraphs G = (V ,E)

• cellular automata local rules:
• Q finite alphabet
• λ : Q × 2Q → Q

• dynamical system QV → QV

DEMO!

• configurations c ∈ QV

• FG,λ(c)v = λ
(
cv , {cv ′ : (v ′, v) ∈ E}

)
• properties: FO formulas on orbits

• example: surjectivity def
= ∀x∃y , y → x

• ϕ⇝ problem ϕ-SAT
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Equivalence with MSO

• for λ and ϕ, consider G(λ, ϕ) def
= {G : FG,λ |= ϕ

}

• always MSO-definable (MSO1 over graphs)
• G(Ψ)

def
=

{
G : G |= Ψ

}
• ∀λ, ∀ϕ, ∃Ψ : G(Ψ) = G(λ, ϕ).

Theorem
For any MSO1 formula Ψ there are λ and ϕ such that

G(Ψ) = G(λ, ϕ)

and Ψ 7→ (λ, ϕ) is computable.
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Equivalence with MSO

• Gcon(λ, ϕ)
def
= {G : FG,λ |= ϕ and G connected

}

Theorem bis
For any MSO1 formula Ψ there are λ and ϕ such that

1. Gcon(Ψ) = Gcon(λ, ϕ),
2. ϕ only depends on prefix signature of prenex Ψ,

and Ψ 7→ (λ, ϕ) is computable.

• prefix signature: ∃X , ∀Y , ∀x , ∀y , ∀z ⇝ ∃2∀2∀1

• from now on, all graphs are connected!
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Undecidable ϕ-SAT

Corollary
There is ϕ such that ϕ-SAT problem is undecidable.

• Turing machine T 7→ ΨT MSO formula s.t. G |= ΨT iff
“G is a grid that can hold an halting space-time diagram of T ”

• check that prefix signature of ΨT is independent of T

• apply “theorem bis”: ΨT 7→ (λT , ϕT )

• ϕT does not depend on T !

• So there is a fixed ϕ such that:
λT ∈ ϕ-SAT ⇐⇒ G(λT , ϕ) 6= ∅ ⇐⇒ G(ΨT ) 6= ∅ ⇐⇒ T halts
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Examples of ϕ with decidable ϕ-SAT

• ϕ1
def
= ∀x , ∃y , y → x (bijectivity ≡ injectivity ≡ surjectivity)

λ ∈ ϕ1-SAT ⇐⇒

{
q 7→ λ(q, ∅) bijective or,
q 7→ λ(q, {q}) bijective

• ϕ2
def
= ∃x , x → x (having a fixed point)

graph unfolding to tree + bound on depth

• similar reasoning for ¬ϕ1 and ¬ϕ2

Question 1
The smallest ϕ with ϕ-SAT undecidable?
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BOO USA!

• BOOlean Unlabeled Set rules of Any radius
• trade unbounded alphabet for unbounded radius

• Q = {0, 1}
• Sk (c, v) = {cv ′ : d(v ′, v) = k}
• λ : {0, 1} ×

(
2{0,1})R → {0, 1} of radius R:

F (c)v = λ
(
cv ,S1(c, v),S2(c, v), . . . ,SR(c, v)

)
Questions 2

• is there an undecidable ϕ-SAT in this model?
• can we capture all MSO?
• what about larger (fixed) alphabet?
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Back to classical FO SAT

• F : family of dynamical systems
• FO-SAT

• input: ϕ FO formula on orbits
• question: ∃?F ∈ F : F |= ϕ

• decidable for F = {finite dynamical systems}

Questions 3
• F = {q-uniform automata networks}?
• F = {Boolean networks}?
• F = {FG,λ : G finite graph} for some fixed λ

Theorem (unpublished but true ,)
There is a 2D CA F such that FO-SAT is undecidable for
F = {F}.
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Endless variations

• replace sets by (capped) multisets: 2Q ⇝ [k ]Q

• non-uniform CA: add labels on vertices

• Cayley graphs: add labels on edges + λ distinguishes
incoming neighbors

• undecidability for other properties?
• intrinsic universality
• producing large cycles/transients

• replace SAT by ω-nontrivial

11 / 11


